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1. Introduction 

 
The procedure that requires most of the calculation 

time in SN method is the source iteration inversion that 
is also called sweeping. This calculation can be speeded 
up by utilizing parallel computers. Many of parallel 
algorithms that have been developed were coarse 
grained [1-4], until the ordered sweep was introduced 
[5]. The ordered sweep algorithm based on diagonal 
line sweep offers utilization of massive computers and 
also retains the ability to invert the source iteration in a 
single sweep. The algorithm itself can be improved with 
the combination with other parallel algorithms. The 
performance of the ordered sweep algorithm combined 
with the domain decomposition is described in this 
paper. 

 
2. Methods 

 
In this section some of the techniques used to make 

parallelization of spatial domain are described. It 
includes the ordered sweep algorithm, the domain 
decomposition algorithm, and the combination of the 
ordered sweep and domain decomposition algorithm.  

 
2.1 Ordered Sweep 

 
The ordered sweep algorithm is based on the diagonal 

line/plane sweep method. In two-dimensional geometry, 
all cells along the diagonal line can be calculated 
simultaneously. The sweep progression is shown in 
Fig.1a. In three-dimensional geometry, all cells along 
the diagonal plane can be calculated simultaneously. 

 
Fig. 1. The ordered sweep (a) sweep progression (b) spatial 

domain assigned to four processors 
 
The ordered sweep algorithm maps this diagonal 

line/plane into the processors grid. In two-dimensional 
geometry, the diagonal line is projected onto Y line (can 
be X), shown in Fig.1b, so that the parallelization occurs 
in this line while the other is performed serially. In 
three-dimensional geometry, the diagonal plane is 
projected onto Y-Z plane (can be X-Y or X-Z). 

This algorithm has the following characteristics. It 
represents the intrinsic SN sweep and therefore no 
degradation in iteration convergence. However, it 
produces idle processors during startup and completion, 
reducing the parallel computational efficiency. To 
overcome the inefficiency, the algorithm must be able to 
pipeline the sweep. Method 1 is to pipeline the angles 
within one octant and also the pair of octant that is 
calculated serially, i.e., the µ < 0 octant and the µ > 0 
octant, while Method 2 is to pipeline the pair of octant 
only. 

 
2.2 Domain Decomposition 
 

The domain decomposition is decomposing the 
spatial domain into several subdomains that can be 
processed concurrently, shown in Fig.2a. The 
decomposition can be done in one axis or in every axis. 
For example in two-dimensional geometry, the 
decomposition can be X, Y, or X-Y decomposition, 
shown in Fig.2b. For three-dimensional geometry, the 
decomposition can be X, Y, Z, X-Y, X-Z, Y-Z, or X-Y-Z 
decomposition. 

 
Fig. 2. The domain decomposition (a) sweep progression (b) 

spatial domain assigned to four processors 
 
At the beginning of a transport sweep, each processor 

has estimates for the incident interface fluxes for its 
subdomain. At the end of a transport sweep, new 
estimates have been calculated and the exiting interface 
fluxes are shifted to neighboring processors. The 
transport sweep must be ordered so that each processor 
is able to use the new outgoing interface boundary 
fluxes from its neighbors as soon as possible. This is 
called the alternating direction sweeps. 

This algorithm has the following characteristics. It 
does not produce idle processors and it decomposes the 
spatial domain in every axis. However, there is 
degradation in the convergence rate due to the 
geometric domain decomposition, thus reducing the 
parallel efficiency. The degradation is not significant 
provided the subdomains assigned to separate 
processors do not become optically thin. 
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2.3 Ordered Sweep and Domain Decomposition 

 
The algorithm decomposes the spatial domain into 

several subdomains and performs the ordered sweep, 
based on diagonal line sweep, within each domain. The 
domain decomposition is applied in subdomain level 
using the alternating direction sweep, shown in Fig.3. 

 
Fig. 3. The ordered sweep – domain decomposition (a) sweep 

progression (b) spatial domain assigned to eight processors 
 
At the beginning of transport sweep, each processor 

has estimates for the boundary conditions. The sweep 
begins from the corner having all boundary conditions 
required within each subdomain. After one sweep inside 
the subdomain, the exiting interface fluxes are shifted to 
neighboring subdomain. Then sweep for other octants 
until every octant has been swept. 

This algorithm has the following characteristics. 
Since the domain decomposition is applied in larger 
subdomain, the convergence degradation is small. The 
ordered sweep is applied inside the subdomain and it 
decreases the number of idle processors, thus improving 
the efficiency of the basic ordered sweep. The domain 
decomposition also allows decomposition in every axis, 
thus giving the possibility to use more processors 
compared to the basic ordered sweep. 

 
3. Problem Test and Results 

 
The problem tested for two-dimensional geometry is 

a one group, isotropic, fixed source problem. All 
calculations were performed using 320 × 320 mesh, S16 
product quadratures, and relative error tolerance of 10-4. 
The serial calculation finished in 1599 iterations and 
took 2081.43s. The problem tested for three-
dimensional geometry is a one group, isotropic, 
eigenvalue problem. All calculations were performed 
using 120 × 120 × 120 mesh, S4 product quadratures, 
and relative error tolerance of 10-7. The serial 
calculation finished in 387 iterations and took 2565.46s. 

Fig.4. shows the speedup for the two-dimensional 
geometry. The speedup of the spatial domain 
decomposition is shown to be higher than the angular 
domain decomposition (ADD). This is because in our 
cluster system, each processor communicates through 
the master node, makes the communication processed in 
turn and costly. The angular domain decomposition 
requires each processor to transfer scalar flux 
information which is proportional to mesh size, while 
the spatial domain decomposition can handle this with 

the blocking concept. Fig.5. shows the speedup for the 
three-dimensional geometry. 
 

 
Fig. 4. Speedup for 320 × 320 Mesh (Method 2). 

 

 
Fig. 5. Speedup for 120 × 120 × 120 Mesh (Method 2). 

 
4. Conclusions 

 
The combination of the ordered sweep and domain 

decomposition shows the scalability and increases the 
performance of the basic ordered sweep in speedup and 
the number of processors that can be utilized. This is 
achieved by improving the parallel computational 
efficiency and decomposing the spatial domain in every 
axis. 
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